Development of aroCACM/MPMPO 1.0: a model to simulate secondary organic aerosol from aromatic precursors in regional models
نویسندگان
چکیده
The atmospheric oxidation of aromatic compounds is an important source of secondary organic aerosol (SOA) in urban areas. The oxidation of aromatics depends strongly on the levels of nitrogen oxides (NOx). However, details of the mechanisms by which oxidation occurs have only recently been elucidated. Xu et al. (2015) developed an updated version of the gas-phase Caltech Atmospheric Chemistry Mechanism (CACM) designed to simulate toluene and m-xylene oxidation in chamber experiments over a range of NOx conditions. The output from such a mechanism can be used in thermodynamic predictions of gas–particle partitioning leading to SOA. The current work reports the development of a model for SOA formation that combines the gas-phase mechanism of Xu et al. (2015) with an updated lumped SOA-partitioning scheme (Model to Predict the Multi-phase Partitioning of Organics, MPMPO) that allows partitioning to multiple aerosol phases and that is designed for use in larger-scale three-dimensional models. The resulting model is termed aroCACM/MPMPO 1.0. The model is integrated into the University of California, Irvine – California Institute of Technology (UCI-CIT) Airshed Model, which simulates the South Coast Air Basin (SoCAB) of California. Simulations using 2012 emissions indicate that “low-NOx” pathways to SOA formation from aromatic oxidation play an important role, even in regions that typically exhibit high-NOx concentrations.
منابع مشابه
Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation
[1] A module for predicting the dynamic evolution of the gas phase species and the aerosol size and composition distribution during formation of secondary organic aerosol (SOA) is presented. The module is based on the inorganic gas-aerosol equilibrium model Simulating the Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2) and updated versions of the lumped Caltech Atmospheric Chemis...
متن کاملTerpene and Terpenoid Emissions and Secondary Organic Aerosol Production
Approximately 90% of fine aerosol in the Midwestern United States has a regional component with a sizable fraction attributed to secondary production of organic aerosol (SOA). The Ozark Forest is an important source of biogenic SOA precursors like isoprene (> 150 mg m-2 d-1), monoterpenes (10-40 mg m-2 d-1), and sesquiterpenes (1040 mg m-2d-1). Anthropogenic sources include secondary sulfate an...
متن کاملSimulation and analysis of secondary organic aerosol dynamics in the South Coast Air Basin of California
[1] The dynamics of secondary organic aerosol (SOA) formation are analyzed using a species-resolved SOA model for the South Coast Air Basin of California (SoCAB). Updated versions of the Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics (MPMPO) are integrated with the CIT airshed model. The simulations are performed using input data ...
متن کاملElucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions.
Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and or...
متن کاملMulti-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model
Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multigenerational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle pa...
متن کامل